Seminar第2317讲 带有分数阶拉普拉斯的偏微分方程的径向基函数法

创建时间:  2022/10/31  谭福平   浏览次数:   返回

报告题目 (Title):Radial basis function methods for PDEs with integral fractional Laplacian(带有分数阶拉普拉斯的偏微分方程的径向基函数法)

报告人 (Speaker):张中强 副教授(美国伍斯特理工学院)

报告时间 (Time):2022年11月4日(周五) 10:00-11:30

报告地点 (Place):腾讯会议 426-278-452

邀请人(Inviter):李常品、蔡敏


报告摘要:We consider radial basis function methods for fractional PDEs on general bounded domains. Efficient computation of such problems with high accuracy on bounded domains is challenging, due to the intrinsic singularity and nonlocal nature of the fractional Laplacian. We develop a numerical method that can accurately compute the fractional Laplacian of any radial basis function. We also present a flexible formulation for collocation. We present several examples to compare our method with some existing methods and illustrate the efficiency in two dimensions.

上一条:Seminar第2318讲 离散可积系统与潘勒韦方程

下一条:Seminar第2316讲 半渗透界面质量输运的相场模型

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们