Seminar第2213讲 Geometry of Painlevé equations: (5,6)

创建时间:  2021/11/25  谭福平   浏览次数:   返回

报告题目 (Title):Geometry of Painlevé equations: (5,6)

报告人 (Speaker): Anton DZhamay 教授(北科罗拉多大学)

报告时间 (Time):2021年11月30日(周二) 11:00-13:00

报告地点 (Place):腾讯会议ID:828 397 716

邀请人(Inviter):张大军


报告摘要:In this mini-course we would present some beautiful geometric ideas underlying the theory of Painlevé equations, both differential and discrete. We explain the idea behind the construction, due to K. Okamoto, of the space of initial conditions of a differential Painlevé equation, and how understandign the geometry of this space can help us understand its symmetries (Bäcklund transformations). We also explain the appearance of discrete Painlevé equations as particular combinations of such symmetries that admit a structure of a discrete dynamical systems. We then generalize these ides to explain the full classification scheme of Painlevé equations, due to H. Sakai.

上一条:Seminar第2215讲 Value-Gradient Formulation for Optimal Control Problem and its Machine-Learning Algorithm

下一条:Seminar第2212讲 Discovering the subdiffusion model in an unknown medium

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们