Seminar 第1703期 高阶椭圆算子的色散估计

创建时间:  2018/10/23  谭福平   浏览次数:   返回

报告主题:高阶椭圆算子的色散估计
报告人:尧小华 教授 (华中师范大学)
报告时间:2018年11月1日(周四)10:00
报告地点:校本部G507
邀请人:赵发友

报告摘要:In this talk, I will mainly address dispersive estimates of the fourth-order Schrodinger operator H = (−?)^2 + V (x) under suitable spectrum assumptions. We ?rst begin with the Jensen-Kato decay estimate and local decay estimate, and then establish the endpoint global Strichartz estimates of exp{itH}. These estimates can be similarly established for other higher order cases H = (−?)^m +V (x) with m ≥ 3. Finally, some applications of these estimates will be mentioned. This is a joint-work with Hongliang Feng and Avy So?er.

 

欢迎教师、学生参加 !

上一条:Seminar第1704期 On isometric extension problem

下一条:Seminar第1702期 A Fast Proximal Point Method for Computing Wasserstein Distance

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们