Seminar第1702期 A Fast Proximal Point Method for Computing Wasserstein Distance

创建时间:  2018/10/22  谭福平   浏览次数:   返回

报告主题:A Fast Proximal Point Method for Computing Wasserstein Distance
报告人:王祥丰 副教授 (华东师范大学计算机科学与软件工程学院)
报告时间:2018年10月24日(周三)15:30
报告地点:校本部G508
邀请人:白延琴教授

报告摘要:Wasserstein distance plays increasingly important roles in machine learning, stochastic programming and image processing. Major efforts have been under way to address its high computational complexity, some leading to approximate or regularized variations such as Sinkhorn distance. However, as we will demonstrate, regularized variations with large regularization parameter will degradate the performance in several important machine learning applications, and small regularization parameter will fail due to numerical stability issues with existing algorithms. We address this challenge by developing an Inexact Proximal point method for Optimal Transport (IPOT) with the proximal operator approximately evaluated at each iteration using projections to the probability simplex. We prove the algorithm has linear convergence rate. We also apply IPOT to learning generative models, and generalize the idea of IPOT to a new method for computing Wasserstein barycenter.

欢迎教师、学生参加 !

上一条:Seminar 第1703期 高阶椭圆算子的色散估计

下一条:Seminar第1701期 广义信赖域子问题的新表述和高效算法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们