Seminar第2992讲 数据驱动的Wasserstein分布鲁棒优化的矩松弛方法

创建时间:  2025/12/10  谭福平   浏览次数:   返回

报告题目 (Title):Moment Relaxations for Data-Driven Wasserstein Distributionally Robust Optimization(数据驱动的Wasserstein分布鲁棒优化的矩松弛方法)

报告人 (Speaker):钟粟晗 副教授(上海交通大学)

报告时间 (Time):2025年12月16日(周二) 16:00

报告地点 (Place):GJ303

邀请人(Inviter):周安娃


报告摘要:We propose moment relaxations for data-driven p-Wasserstein distributionally robust optimization (p-WDRO) problems that are defined by polynomials. We identify conditions dependent on p and defining polynomial degrees such that the proposed k-th order moment relaxations preserve the asymptotic consistency (i.e., the relaxation gap decreases linearly with respect to the Wasserstein radius) of the original p-WDRO. In particular, these conditions translate to effective bounds on k, which lead to polynomially sized semidefinite optimization formulations that are compatible with existing solvers. Numerical experiments on a two-stage production problem are included to show that the our conditions can hold for the lowest relaxation order k=1 (Shor relaxation) in some practical cases.

上一条:Seminar第2990讲 分次Nakajima张量簇

下一条:Seminar第2991讲 矩阵多项式优化的拉格朗日乘子表达与紧松弛​

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们