Seminar第2991讲 矩阵多项式优化的拉格朗日乘子表达与紧松弛​

创建时间:  2025/12/10  谭福平   浏览次数:   返回

报告题目 (Title):Lagrange multiplier expressions for matrix polynomial optimization and tight relaxations(矩阵多项式优化的拉格朗日乘子表达与紧松弛)

报告人 (Speaker):聂家旺 教授(加州大学圣地亚哥分校)

报告时间 (Time):2025年12月16日(周二) 15:00

报告地点 (Place): GJ303

邀请人(Inviter):周安娃


报告摘要:This talk discusses matrix constrained polynomial optimization. We investigate how to get explicit expressions for Lagrange multiplier matrices from the first order optimality conditions. The existence of these expressions can be shown under the nondegeneracy condition. Using Lagrange multiplier matrix expressions, we propose a strengthened Moment-SOS hierarchy for solving matrix polynomial optimization. Under some general assumptions, we show that this strengthened hierarchy is tight, or equivalently, it has finite convergence. We also study how to detect tightness and how to extract optimizers. Numerical experiments are provided to show the efficiency of the strengthened hierarchy.

上一条:Seminar第2992讲 数据驱动的Wasserstein分布鲁棒优化的矩松弛方法

下一条:Seminar第2990讲 三角投射dg代数

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们