Seminar第2963讲 不同行选择Kaczmarz型算法的收敛性

创建时间:  2025/11/17  谭福平   浏览次数:   返回

报告题目 (Title):不同行选择Kaczmarz型算法的收敛性

报告人 (Speaker):白中治 研究员(中国科学院数学与系统科学研究院)

报告时间 (Time):2025年11 月17日(周一)18:30

报告地点 (Place):地腾讯会议:390-527-525

邀请人(Inviter):杨永建、谭福平


报告摘要: By theoretically analyzing and numerically experimenting several criteria typically adopted in the non-randomized and the randomized Kaczmarz method for selecting the working row, we derive sharper upper bounds for the convergence rates of some of the correspondingly induced Kaczmarz-type methods including those with respect to the maximal residual, maximal distance, and distance selection rules of the working row, and, for this whole suite of iteration methods consisting of the Kaczmarz methods with respect to the uniform, non-uniform, residual, distance, maximal residual, and maximal distance selection rules of the working row, we reveal their comparable relationships in terms of both mean-squared distance and mean-squared error, and show their computational effectiveness and numerical robustness based upon implementing a large number of test examples.

上一条:Seminar第2959讲 大规模MIMO中的1比特预编码:算法设计与渐进性能分析

下一条:Seminar第2961讲 科学机器学习中的信息计算

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们