Seminar第2961讲 科学机器学习中的信息计算

创建时间:  2025/11/17  谭福平   浏览次数:   返回

报告题目 (Title):Informative Computing for Scientific Machine Learning

报告题目 (中文):科学机器学习中的信息计算

报告人 (Speaker): 孙琪 助理教授(同济大学)

报告时间 (Time):2025年11月19日(周三) 8:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):李新祥


报告摘要:Physics-Informed machine learning has emerged as a powerful paradigm in scientific computing, providing effective surrogate solutions and operators for broad classes of partial differential equations. However, conventional learning approaches often struggle with problems involving singular behaviors, such as discontinuities in hyperbolic equations or singularities in Green’s functions. This talk introduces an informative computing framework that addresses these challenges through three innovations: (1) incorporating domain-specific prior knowledge into the solution ansatz via an augmented variable; (2) utilizing neural networks to handle the increased dimensionality in a mesh-free manner; (3) reconstructing solutions or operators by projecting trained models back onto the physical domain. With collocation points sampled only on piecewise hyperplanes rather than fulfilling the entire lifted space, we demonstrate through various benchmarks and applications that our methods efficiently resolve solution singularities in both hyperbolic and elliptic problems.

上一条:Seminar第2963讲 不同行选择Kaczmarz型算法的收敛性

下一条:Seminar第2958讲 基尔霍夫板问题的内罚虚拟元方法的后验误差估计

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们