Seminar第2893讲 球Banach函数空间中的BBM、BVY和BSVY公式

创建时间:  2025/08/23  谭福平   浏览次数:   返回

报告题目 (Title):球Banach函数空间中的BBM、BVY和BSVY公式

报告人 (Speaker):杨大春 教授(北京师范大学)

报告时间 (Time):2025年9月4日(周四) 15:30

报告地点 (Place):校本部 GJ303

邀请人(Inviter):赵发友


报告摘要:The concept of ball quasi-Banach function (BQBF) spaces was introduced in 2017 by Y. Sawano, K.-P. Ho, D. Yang, and S. Yang. It is well known that some well-known function spaces, such as Morrey spaces, weighted Lebesgue spaces, mixed-norm Lebesgue spaces, and Orlicz-slice spaces, are ball quasi-Banach function spaces, but not quasi-Banach func- tion spaces. In this talk, we will first recall the celebrated (BBM) formulae of J. Bourgain, H. Brezis, and P. Mironescu and the recent surprising (BVY and BSVY) formulae of H. Brezis, A. Seeger, J. Van Schaftingen, and P.-L. Yung. Then we will introduce some recent extensions of these formulae to Sobolev spaces associated with ball Banach function spaces. In particular, we will introduce some methods on how to overcome the difficulties caused by the lack of the translation invariance, the rotation invariance, and the explicit expression of the quasi-norm of BQBF spaces under consideration.

上一条:核心数学研究所——几何与分析综合报告第110讲 半有限因子中投影算子的和及其应用

下一条:Seminar第2894讲 卷积型随机Volterra积分方程的快速θ-Maruyama格式:均方稳定性和强收敛性分析

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们