Seminar第2894讲 卷积型随机Volterra积分方程的快速θ-Maruyama格式:均方稳定性和强收敛性分析

创建时间:  2025/07/08  谭福平   浏览次数:   返回

报告题目:卷积型随机Volterra积分方程的快速θ-Maruyama格式:均方稳定性和强收敛性分析

Title: Fast θ-Maruyama scheme for stochastic Volterra integral equations of convolution type: mean-square stability and strong convergence analysis

报告人 (Speaker):肖爱国 教授(湘潭大学)

报告时间 (Time):2025年7月13日(周日) 10:30

报告地点 (Place):校本部GJ406

邀请人(Inviter):刘东杰


报告摘要: In this talk, a fast θ-Maruyama method is proposed for stochastic Volterra integral equations of convolution type with singular and Hölder continuous kernels based on the sum-of-exponentials approximation. Furthermore, the average storage O(N) and the calculation cost O(N2) of θ-Maruyama scheme are reduced to O(logN) and O(N logN) for T》1 or O(log2N) and O(Nlog2N) for T≈1, respectively, which implies that the fast θ-Maruyama scheme is confirmed to improve the computational efficiency of the θ-Maruyama method. Under the local Lipschitz and linear growth conditions, strong convergence of the given numerical scheme are obtained. Then, for the linear test equation, we show the asymptotic behavior of solutions in mean square sense. Further, we obtain the explicit structure of the stability matrices and some numerical results of the mean-square stability for the fast θ-Maruyama method applied to the linear test equation. Finally, some numerical experiments are also given to illustrate the effectiveness of the method.



下一条:Seminar第2893讲 扭Yangians的Drinfeld实现及其应用

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们