Seminar第2853讲 非负矩阵分解的数值计算

创建时间:  2025/06/03  谭福平   浏览次数:   返回

报告题目 (Title):Numerical Computation for Nonnegative Matrix Factorization(非负矩阵分解的数值计算)

报告人 (Speaker): Chu Delin(新加坡国立大学)

报告时间 (Time):2025年 6 月3日 (周二) 9:00-10:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):王卿文


报告摘要Nonnegative matrix factorization is a prominent technique for data dimensionality reduction. In this talk, a framework called ARkNLS is introduced for computing NMF. first, a recursive formula for the solution of the rank-k NlS is established. This recursive form solution for the Rank-k NLS problem recursive formula can be used to derive for any integer k. As a result, each subproblem for an alternating rank-k nonnegative least squares framework can be obtained based on this closed form solution. This talk is then focused on the framework with ka new algorithm for NMFvia the closed form solution of therank3 NlS problem. Furthermore, a new strategy that efficient overcomes the potential singularity problem in rank-3 NLS within the context of NMF computation is also presented. Extensive numerical comparisons using real and synthetic datasets demonstrate that the proposed algorithm provides state-of-the-art performance in terms of computational accuracy and cpu time.

上一条:Seminar第2854讲 代数表示的一些最新进展

下一条:Seminar第2271讲 关于广义秩为3的Nahm和的Mizuno猜想

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们