Seminar第2271讲 关于广义秩为3的Nahm和的Mizuno猜想

创建时间:  2025/05/30  谭福平   浏览次数:   返回

报告题目 (Title):关于广义秩为3的Nahm和的Mizuno猜想

报告人 (Speaker):王博学(武汉大学)

报告时间(Time):2025.6.8 10:30

报告地点 (Place):GJ303

邀请人(Inviter):陈旦旦


报告摘要:Mizuno providied 15 examples of generalized rank three Nahm sums with symmetrizer $\mathrm{diag}(1,2,2)$ which are conjecturally modular. Using the theory of Bailey pairs and some $q$-series techniques, we establish a number of triple sum Rogers--Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except for two non-modular cases. We show that the two exceptional cases of Nahm sums are sums of modular forms of weights $0$ and $1$. We also prove Mizuno’s conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers $\mathrm{diag}(1,1,2)$ and $\mathrm{diag}(1,2,2)$.

上一条:Seminar第2853讲 非负矩阵分解的数值计算

下一条:Seminar第2851讲 裂隙介质核素迁移分数阶导数升尺度建模及应用

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们