Seminar第1505期 Complexity bounds for primal-dual methods minimizing the model of objective function

创建时间:  2017/08/30  谭福平   浏览次数:   返回

报告主题:Complexity bounds for primal-dual methods minimizing the model of objective function
报告人: Yu. Nesterov  教授 比利时鲁汶大学((CORE), UCL, Belgium)
报告时间:2017年9月2日(周六)09:30
报告地点:校本部G507
邀请人: 白延琴教授

报告摘要:We provide Frank-Wolfe (Conditional Gradients) method with a convergence analysis allowing to approach a primal-dual solution of convex optimization problem with composite objective function. Additional properties of complementary part of the objective (strong convexity) significantly accelerate the scheme. We also justify a new variant of this method, which can be seen as a trust-region scheme applying the linear model of objective function. Our analysis works also for a quadratic model, allowing to justify the global rate of convergence for a new second-order method. To the best of our knowledge, this is the first trust-region scheme supported by the worst-case complexity bound.

报告人简介: 比利时鲁汶大学Yurii Nesterov教授是俄罗斯籍数学家,他优化领域国际最顶尖的学者之一。他的工作引领了近十年凸优化算法的发展,包括其在压缩感知、机器学习等方向的应用;他关于凸优化的教科书《Introductory Lectures on Convex Optimization》也成为优化领域的经典著作。其本人是优化领域最高奖Dantzig奖和信息科学领域最高奖之一冯诺伊曼奖的获得者。

欢迎教师、学生参加 !

上一条:Seminar第1504期 浅谈分布式优化算法

下一条:Seminar第1504期 浅谈分布式优化算法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们