Seminar第2764讲 具有高数据异质性的泛化和可解释性MRI重建

创建时间:  2024/11/01  谭福平   浏览次数:   返回

报告题目 (Title):Generalizable and interpretable MRI reconstruction with high data heterogeneity(具有高数据异质性的泛化和可解释性MRI重建)

报告人 (Speaker):陈韵梅(美国佛罗里达大学终身教授)

报告时间 (Time):2024年11月3日(周日) 10:00-12:00

报告地点 (Place):校本部 F楼四楼数学系讨论室

邀请人(Inviter):彭亚新教授


报告摘要:Deep learning methods have demonstrated promising performance in a variety of image reconstruction problems. However, task specific and extremely data demanding are still a major challenging in practical applications. In this work we introduce a generalizable MRI reconstruction method with diverse dataset to tackle those problems. Our approach proposes a variational model, in which the learnable regularization function is parameterized by two sets of parameters: a task-invariant set for common feature encoding and a task-specific part to account for the variations in the heterogeneous data. Then, we generate a neural network, whose architecture follows exactly a convergent learned optimization algorithm for solving the nonconvex and nonsmooth variational model. The network is trained by a bilevel optimization algorithm to prevent overfitting and improve generalizability. A series of experimental results on heterogeneous MRI data sets indicate that the proposed method generalizes well to the reconstruction problems whose undersampling patterns and trajectories are not present during training.

上一条:Seminar第2765讲 基于边值方法求解扩散方程的全离散方法

下一条:Seminar第2763讲 Nonlinear Model reduction methods for parametric dynamical systems

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们