Seminar第2763讲 Nonlinear Model reduction methods for parametric dynamical systems

创建时间:  2024/10/30  谭福平   浏览次数:   返回

报告题目 (Title):Nonlinear Model reduction methods for parametric dynamical systems

报告人 (Speaker):李秋齐 副教授, 湖南大学

报告时间 (Time):2024年11月2日 (周六) 13:30

报告地点 (Place):腾讯会议:431-856-931

邀请人(Inviter):纪丽洁


报告摘要:Parametric dynamical systems are widely used to model physical systems, but their numerical simulation can be computationally demanding due to nonlinearity, long-time simulation, and multi-query requirements. Model reduction methods aim to reduce computation complexity and improve simulation efficiency. However, traditional model reduction methods are inefficient for parametric dynamical systems with nonlinear structures. To address this challenge, we will introduce some nonlinear methods to construct an efficient and reliable surrogate model.

上一条:Seminar第2764讲 具有高数据异质性的泛化和可解释性MRI重建

下一条:Seminar第2762讲 偏微分方程的局部赫米特近似特解法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们