Seminar第2726讲 三维两流体欧拉-麦克斯韦系统的全局适定性

创建时间:  2024/09/26  谭福平   浏览次数:   返回

报告题目 (Title):Global well-posedness for 3D two-fluids Euler–Maxwell system(三维两流体欧拉-麦克斯韦系统的全局适定性)

报告人 (Speaker): 黎野平教授(南通大学)

报告时间 (Time):2024年9月25日(周三) 18:00

报告地点 (Place):线上腾讯会议 829716965

邀请人(Inviter):朱佩成


报告摘要: In this talk, I am going to present the initial value problem on the partially damped “two fluid” Euler–Maxwell equations in three dimensional periodic domain. Compared with the previous “two fluid” Euler–Maxwell results, our model describes two fluids obey different dynamical evolutions, one is compressible Euler and the other is compressible Euler with damping. The global existence of small smooth solutions near constant steady states is established and the time decay rates of perturbed solutions are obtained. The main challenge is to investigate the asymmetric system and find out the transmission mechanism of dissipation. Although there are various variables obeying different dynamical evolutions, we can still derive the unified time-weighted energy frame to achieve our goal. Our theorem in this report shows that partially damped “two fluid” Euler–Maxwell system (namely μ+= 0, μ− >0) also yields the global stability of a constant background. This is a joint work with Prof. Zhu Yi.

上一条:Seminar第2727讲 非一致索伯列夫空间

下一条:Seminar第2725讲 Q4方程的tau函数

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们