Seminar第2693讲 基于学习的优化算法

创建时间:  2024/08/29  谭福平   浏览次数:   返回

报告题目 (Title):Exploring the Learning-based Optimization Algorithms(基于学习的优化算法)

报告人 (Speaker):文再文 教授(北京大学)

报告时间 (Time):2024年8月28日 (周三) 15:00

报告地点 (Place):校本部GJ303

邀请人(Inviter):徐姿 教授


报告摘要:This talk will explore new paradigms for integrating data, models, algorithms, and theories in mathematical optimization. Firstly, we try to understand acceleration methods through ordinary differential equations (ODEs). Under convergence and stability conditions, we formulate a learning optimization problem that minimizes stopping time. This involves transforming the rapid convergence observed in continuous-time models into discrete-time iterative methods based on data. Next, we introduce a Monte Carlo strategy optimization algorithm for solving integer programming problems. This approach constructs probabilistic models to learn parameterized strategy distributions from data, enabling the sampling of integer solutions. Lastly, we discuss the vision of advancing automated theorem proving through formalization assisted by artificial intelligence.

上一条:几何与分析综合报告(Geometry and Analysis Colloquium)

下一条:Elliptic Integrable Systems and Related Topics: Advanced Seminars

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们