上海大学核心数学研究所——几何与分析综合报告第10讲 Functional Intrinsic Volumes

创建时间:  2022/06/28  谭福平   浏览次数:   返回

报告题目 (Title):Functional Intrinsic Volumes

报告人 (Speaker):Monika Ludwig教授(Technische Universität Wien)

报告时间 (Time):2022年6月29日(周三) 15:00-16:00

报告地点 (Place):Zoom meeting: 96210755509;密码: SHU220629

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:A functional Z defined on a space of real-valued functions F is called a valuation if

Z(f V g) + Z(f 𝞚g) = Z(f) + Z(g)

for all f,g in F such that f,g, f V g, f𝞚g in F. Heref V g is the pointwise maximum of f and g, whilef𝞚g is their pointwise minimum. The important, classical notion of valuations on convex bodies is a special case of the rather recent notion of valuations on function spaces.

We present a complete classification of all continuous, epi-translation and rotation invariant valuations on the space of super-coercive convex functions on Rn. This result corresponds to Hadwiger's celebrated theorem on the classification of continuous, translation and rotation invariant valuations on the space of convex bodies. The valuations obtained in our theorem are functional versions of the classical intrinsic volumes. Representations and important properties will be described.

(Based on joint work with Andrea Colesanti and Fabian Mussnig)

上一条:Seminar第2260讲 某些极大算子在有限图上的最佳常数

下一条:Seminar第2259讲 Heavenly方程的对称性、分解和叠加

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们