上海大学核心数学研究所——几何与分析综合报告第8讲 Heintze-Karcher's inequality and Alexandrov's soup bubble theorem

创建时间:  2022/06/16  谭福平   浏览次数:   返回

报告题目 (Title):Heintze-Karcher’s inequality and Alexandrov’s soup bubble theorem

报告人 (Speaker):夏超教授(厦门大学)

报告时间 (Time):2022年6月17日(周五) 10:00-11:00

报告地点 (Place):腾讯会议(716-8675-1741)

邀请人(Inviter):席东盟、李晋、张德凯


报告摘要:Heintze-Karcher’s inequality is an interesting geometric inequality for embedded closed hypersurfaces, which can be used to prove Alexandrov’s soup bubble theorem on embedded closed CMC hypersurfaces. In this talk, we will introduce our recent work on Heintze-Karcher-type inequality for capillary hypersurfaces, via two different methods. As an application, we prove Alexandrov’s soup bubble theorem for hypersurfaces with capillary boundary in the half-space and the half-ball. Moreover, we prove new Alexandrov’s theorem and non-existence result for embedded CMC capillary surfaces in a wedge. This talk is based on ongoing joint work with Xiaohan Jia, Guofang Wang and Xuwen Zhang.

上一条:上海大学核心数学研究所——几何与分析综合报告第9讲 牟合方盖的前世今生

下一条:Seminar第2256讲 非线性Caputo分数阶微分方程的hp间断Galerkin方法的指数收敛

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们