Seminar第2304讲 相对论欧拉方程组的奇性形成

创建时间:  2022/10/08  谭福平   浏览次数:   返回

报告题目 (Title):Formation of singularities for the relativistic Euler equations(相对论欧拉方程组的奇性形成)

报告人 (Speaker):朱圣国 教授(上海交通大学)

报告时间 (Time):2022年10月11日(周二)10:00-11:00

报告地点 (Place):线上腾讯会议,会议 ID:828-891-243

邀请人(Inviter):赖耕


报告摘要:We consider large data problems for C1 solutions of the relativistic Euler equations. In the (1 + 1)-dimensional spacetime setting, if the initial data are strictly away from the vacuum, a key difficulty in considering the singularity formation is coming up with a way to obtain sharp enough control on the lower bound of the mass-energy density. For this reason, via an elaborate argument on a certain ODE inequality and introducing some key artificial (new) quantities, we provide one time-dependent lower bound of the mass-energy density of the (1+1)-dimensional relativistic Euler equations, which involves looking at the difference of the two Riemann invariants, along with certain weighted gradients of them. Ultimately, for C1 solutions with uniformly positive initial mass-energy density of the corresponding Cauchy problem, we give a necessary and sufficient condition for the singularity formation in finite time. This talk is mainly based on joint works with Nikolaos Athanasiou (ICL).

上一条:Seminar第2305讲 谈兰道问题、与素数共舞

下一条:Seminar 第2303讲 混合幂次之和

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们