Seminar第2266讲 关于皮尔斯行列式:微分方程与渐近

创建时间:  2022/07/12  谭福平   浏览次数:   返回

报告题目 (Title):On the Pearcey Determinant: Differential Equations and Asymptotics(关于皮尔斯行列式:微分方程与渐近)

报告人 (Speaker): 张仑 教授(复旦大学)

报告时间 (Time):2022年7月13日 (周三) 15:00

报告地点 (Place):腾讯会议(会议号:800-551-381)

邀请人(Inviter):何卓衡


报告摘要:

The Pearcey kernel is a classical and universal kernel arising from random matrix theory, which describes the local statistics of eigenvalues when the limiting mean eigenvalue density exhibits a cusp-like singularity. It appears in a variety of statistical physics models beyond matrix models as well. In this talk, we are concerned with the Fredholm determinant $\det\left(I-\gamma K^{\mathrm{Pe}}_{s,\rho}\right)$, where $0 \leq \gamma \leq 1$ and $K^{\mathrm{Pe}}_{s,\rho}$ stands for the trace class operator acting on $L^2\left(-s, s\right)$ with the Pearcey kernel. We establish an integral representation of the Pearcey determinant involving the Hamiltonian associated with a family of special solutions to a system of nonlinear differential equations and obtain asymptotics of this determinant as $s\to +\infty$, which is also interpreted as large gap asymptotics in the context of random matrix theory. It comes out that the Pearcey determinant exhibits a significantly different asymptotic behavior for $\gamma=1$ and $0<\gamma<1$, which suggests a transition will occur as the parameter $\gamma$ varies. Based on joint works with Dan Dai and Shuai-Xia Xu.

上一条:Seminar第2267讲 B-型KP方程的分解与叠加

下一条:Seminar第2265讲 群的C*-代数及其K-理论简介

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们