Seminar第2254讲 奇异系数的McKean–Vlasov随机微分方程的估计

创建时间:  2022/06/08  谭福平   浏览次数:   返回

报告题目 (Title):Approximations of McKean–Vlasov Stochastic Differential Equations with Irregular Coefficients

(奇异系数的McKean–Vlasov随机微分方程的估计)

报告人 (Speaker):黄兴 副教授(天津大学)

报告时间 (Time):2022年6月11日 (周六) 15:00-17:00

报告地点 (Place):腾讯会议(会议号:188-247-836 无密码)

邀请人(Inviter):阳芬芬


报告摘要:The goal of this paper is to approximate two kinds of McKean–Vlasov stochastic differential equations (SDEs) with irregular coefficients via weakly interacting particle systems. More precisely, propagation of chaos and convergence rate of Euler–Maruyama scheme associated with the consequent weakly interacting particle systems are investigated for McKean–Vlasov SDEs, where (1) the diffusion terms are Hölder continuous by taking advantage of Yamada–Watanabe’s approximation approach and (2) the drifts are Hölder continuous by freezing distributions followed by invoking Zvonkin’s transformation trick.

上一条:Seminar第2255讲 一类几何偏微分方程的最新进展

下一条:上海大学核心数学研究所——几何与分析综合报告第7讲 Curvature flows for hypersurfaces in hyperbolic space and their geometric applications

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们