Seminar第2250讲 多边形网格上不可压缩的 Navier-Stokes 方程的稳健不连续 Galerkin 方法

创建时间:  2022/06/02  谭福平   浏览次数:   返回

报告题目 (Title): 多边形网格上不可压缩的Navier-Stokes方程的稳健不连续Galerkin方法

A pressure-robust staggered DG method for the incompressible Navier-Stokes equations on polygonal meshes)

报告人 (Speaker):Lina Zhao (City University of Hong Kong)

报告时间:2022年06月08日(周三)15:00

参会方式:腾讯会议 会议ID: 679-858-620 密码:无

邀请人:潘晓敏


报告摘要:

In this talk, I will introduce a novel pressure-robust staggered discontinuous Galerkin method for the incompressible Navier-Stokes equations on general polygonal meshes. The devising of the method hinges on a carefully designed finite element pair and nonlinear convective term, which ensures pressure-robustness. The optimal convergence estimates for all the variables in L2norm are proved under a suitable smallness condition. In particular, the unique solvability and convergence error estimates are proved to be independent of the irrotational part of the source term. Numerical experiments will be presented to validate the theoretical findings and demonstrate the superior performances of the proposed method, especially for problems with high Reynolds number or zero velocity.

上一条:Seminar第2251讲 Deformations and cohomology theory of modified Rota-Baxter algebras

下一条:上海大学核心数学研究所——几何与分析综合报告第6讲 Gromov-Hausdorff Limit of Riemannian manifolds with Ricci Curvature bounds

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们