Seminar第2237讲 Pointed modular tensor category

创建时间:  2022/03/23  谭福平   浏览次数:   返回

报告题目 (Title):Pointed modular tensor category

报告人 (Speaker):董崇英教授(美国加州大学Santa Cruz分校)

报告时间 (Time):2022年3月26日(周六) 9:00-10:00

报告地点 (Place):腾讯会议

会议ID:765-947-281


报告摘要:A modular tensor category is pointed if every simple object is a simple current. We show that any pointed modular tensor category is equivalent to the module category of a lattice vertex operator algebra. Moreover, if the pointed modular tensor category C is the module category of a twisted Drinfeld double associated to a finite abelian group G and a 3-cocycle with coefficients in U(1), then there exists a selfdual positive definite even lattice L such that G can be realized an automorphism group of lattice vertex operator algebra V_L, V_L^G is also a lattice vertex operator algebra and C is equivalent to the module category of V_L^G. This is a joint work with S. Ng and L. Ren.

上一条:Seminar第2238讲 Regular representations and A_m(V)-A_n(V)-bimodules

下一条:Seminar第2236讲 Factorization of xn-1over finite fields

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们