Seminar第2201讲 四方曲线与Hirota-Satsuma方程的代数几何解

创建时间:  2021/11/19  谭福平   浏览次数:   返回

报告题目 (Title):四方曲线与Hirota-Satsuma方程的代数几何解

报告人 (Speaker):耿献国 教授(郑州大学)

报告时间 (Time):2021年11月21日(周日) 10:00-12:00

报告地点 (Place):腾讯会议ID:143 198 989

邀请人(Inviter):张大军


报告摘要:On the basis of the characteristic polynomials of Lax matrixes for the soliton hierarchies, we introduce the corresponding algebraic curves, including the hyperelliptic curve, trigonal curve, and tetragonal curve. We study the calculation of genus of algebraic curve, properties at infinity, and the construction of three kinds of Abel differentials. We establish the corresponding Baker-Akhiezer functions and meromorphic functions. The straightening out of various soliton flows is exactly given through the Abel map and Abel-Jacobi coordinates. Using the theory of algebraic curves, we obtain the explicit Riemann theta function representations of the Baker-Akhiezer function and the meromorphic function. As an illustration, we arrive at algebro-geometric solutions of the entire Hirota-Satsuma coupled hierarchy.

上一条:Seminar第2202讲 Efficient Algorithm for Non-convex Image Recovery

下一条:Seminar第2200讲 Full Euler-Poisson方程组的半空间问题

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们