Seminar第2191讲 Jet modules for the vector field Lie algebras

创建时间:  2021/11/17  谭福平   浏览次数:   返回

报告题目 (Title):Jet modules for the vector field Lie algebras

报告人 (Speaker): 刘根强 副教授(河南大学)

报告时间 (Time):2021年11月17日(周三) 18:30

报告地点 (Place):腾讯会议 会议ID:341 244 744

邀请人(Inviter):孙建才


报告摘要:For a commutative algebra $A$ over $\mathbb{C}$, let $\mathfrak{g}=\text{Der}(A)$. A module over the smash product $A\# U(\mathfrak{g})$ is called a jet $\mathfrak{g}$-module, where $U(\mathfrak{g})$ is the universal enveloping algebra of $\mathfrak{g}$. In this talk, we talk about jet modules when $A=\mathbb{C}[t_1^{\pm 1},t_2]$. We show that $A\#U(\mathfrak{g})\cong\mathcal{D}\otimes U(L)$, where $\mathcal{D}$ is the Weyl algebra $\mathbb{C}[t_1^{\pm 1},t_2, \frac{\partial}{\partial t_1},\frac{\partial}{\partial t_2}]$, and $L$ is a Lie subalgebra of $A\# U(\mathfrak{g})$ called the jet Lie algebra corresponding to $\mathfrak{g}$. Using a Lie algebra isomorphism $\theta:L \rightarrow \mathfrak{m}_{1,0}\Delta$, where $\mathfrak{m}_{1,0}\Delta$ is the subalgebra of vector fields vanishing at the point $(1,0)$, we show that any irreducible finite dimensional $L$-module is isomorphic to an irreducible $\gl_2$-module. As an application, we give tensor product realizations of irreducible jet modules over $\mathfrak{g}$ with uniformly bounded weight spaces.

上一条:Seminar第2192讲 Cohomologies, extensions and deformations of Leibniz Triple Systems

下一条:Seminar第2190讲 The Power Method and Beyond

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们