Seminar第2176讲 高维混合模型的聚类问题(Estimating the number of clusters for high-dimensional mixture model)

创建时间:  2021/11/03  谭福平   浏览次数:   返回

报告题目 (Title):Estimating the number of clusters for high-dimensional mixture model(高维混合模型的聚类问题)

报告人 (Speaker):刘一鸣 博士(暨南大学)

报告时间 (Time):2021年11月7日(周日) 10:00

报告地点 (Place):腾讯会议(会议号:926 463 645)

邀请人(Inviter):张阳春


报告摘要:This paper proposes the variant Akaike and Bayesian information criteria to estimate the number of clusters for high dimensional mixture data. By investigating the limiting behaviours of the eigenvalues of sample covariance matrix for the observed data, the consistency of our criteria is obtained in different scenarios under some derived conditions. Simulation studies demonstrate that our approaches are more robust and competitive than other existing techniques.

上一条:Seminar第2177讲 大学数学课程与教学如何适应新时代的要求

下一条:Seminar第2175讲 alpha-Wiener 桥过程漂移参数极大似然估计的渐近行为

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们