Seminar第2103期 围长为5的平面图的森林顶点划分

创建时间:  2021/05/13  谭福平   浏览次数:   返回

报告主题:围长为5的平面图的森林顶点划分(Forest vertex partitions of planar graphs with girth 5)

报 告 人:陈敏 教授(浙江师范大学)

报告时间:2021年5月14日(周五) 18:30-19:30

会议形式:腾讯会议

会议ID:906530212

邀请人:袁西英

主办部门:理学院数学系

报告摘要:Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China.Given a graph G=(V, E), if its vertex set V(G) can be partitioned into two non-empty subsets V_1 and V_2 such that ?(G(V_1 ))≤d_1 and ?(G(V_2 ))≤d_2, then we say that G admits a (?_(d_1 )-?_(d_2 ))-partition. If G[V_1] and G[V_2] are both forests with maximum degree at most d_1 and d_1, respectively, then we further say that G admits an (F_(d_1 ),F_(d_1 ))-partition.

Let G_g denote the class of planar graphs with girth at least g. It is known that every graph in G_5 admits a (?_3-?_5)-partition. In this talk, we shall strengthen this result by proving that every graph in G_5 admits an (F_3,F_5)-partition. This is joint work with Andr\'{e} Raspaud, Weifan Wang and Weiqiang Yu.

上一条:Seminar第2104期 图的完全染色

下一条:Seminar第2104期 图的完全染色

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们