Seminar第2097期 Low regularity local well-posedness of radial solutions to...

创建时间:  2021/05/07  谭福平   浏览次数:   返回

报告主题:Low regularity local well-posedness of radial solutions to the extremal hypersurface equations in (1+3)-dimensional Minkowski space

报 告 人:周忆 教授(复旦大学数学科学学院)

报告时间:2021年5月7日(周五) 10:30

参会方式:腾讯会议

会议ID:146 132 588

邀请人:刘见礼

主办部门:理学院数学系

报告摘要:In this paper, we study the Cauchy problem for the radially symmetrical solutins to the extremal hypersurface equations in (1+3)-dimensional Minkowski space and prove an almost sharp local well-posedness result using the characteristic coordinates transformation. By introducing Riemann invariants and characteristic transformation we can convert the quasilinear equations to semilinear form. Based on two-dimensional KSS estimates as well as one-dimensional maximal function estimates, we can show the crucial aprior estimates which is important to prove our main result.

上一条:Seminar第2098期 Asymptotic decay for defocusing semilinear wave equations

下一条:Seminar第2098期 Asymptotic decay for defocusing semilinear wave equations

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们