报告主题:Low regularity local well-posedness of radial solutions to the extremal hypersurface equations in (1+3)-dimensional Minkowski space
报 告 人:周忆 教授(复旦大学数学科学学院)
报告时间:2021年5月7日(周五) 10:30
参会方式:腾讯会议
会议ID:146 132 588
邀请人:刘见礼
主办部门:理学院数学系
报告摘要:In this paper, we study the Cauchy problem for the radially symmetrical solutins to the extremal hypersurface equations in (1+3)-dimensional Minkowski space and prove an almost sharp local well-posedness result using the characteristic coordinates transformation. By introducing Riemann invariants and characteristic transformation we can convert the quasilinear equations to semilinear form. Based on two-dimensional KSS estimates as well as one-dimensional maximal function estimates, we can show the crucial aprior estimates which is important to prove our main result.