Seminar第2090期 蒙特卡洛树搜索方法在稀疏矩阵重排序问题的应用

创建时间:  2021/04/15  谭福平   浏览次数:   返回

报告主题:蒙特卡洛树搜索方法在稀疏矩阵重排序问题的应用(An Efficient Single-player Monte Carlo Tree Search Method Based on Deep Learning and Element Importance for Sparse Matrix Reordering Problems)

报告人:戴彧虹 研究员 (中科院数学与系统科学研究院)

报告时间:2021年4月17日(周六) 14:30

报告地点:F309

邀请人:白延琴

报告摘要:The sparse matrix reordering problems is often used to produce the fewest new nonzero elements (called fill-ins) as possible as it can save computational cost and storage before applying direct methods to solve the large scale linear system. The sparse matrix reordering problems is NP-complete, so heuristic algorithms are usually used. This talk treats the sparse matrix reordering problems as a single-player game problem. Based on Deep Learning and element importance, an efficient single –player Monte Carlo tree search method is proposed to solve the sparse matrix reordering Problems.

上一条:Seminar第2091期 厄尔米特—杨—米尔斯流

下一条:Seminar第2089期 流感模型研究的一些进展

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们