Seminar第2088期 Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrodinger equation: far-field behavior

创建时间:  2021/04/01  谭福平   浏览次数:   返回

报告主题:Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrodinger equation: far-field behavior

报告人:王灯山 教授 (北京师范大学)

报告时间:2021年4月2日(周五)18:00

报告形式:腾讯会议

https://meeting.tencent.com/s/FSjBA7F2dEnI

会议ID:786 276 354

会议密码:1234

邀请人:夏铁成

主办部门:理学院数学系

报告摘要:The integrable focusing NLS equation admits soliton solutions whose associated spectral data consist of a single pair of conjugate poles of arbitrary order. We study families of such multiple-pole solitons generated by Darboux transformations as the pole order tends to infinity. It is shown that in an appropriate scaling, there are four regions in the space-time plane: an exponential-decay region, an algebraic-decay region, a non-oscillatory region, and an oscillatory region. Using the nonlinear steepest-descent method for analyzing Riemann-Hilbert problems, we compute the leading-order asymptotic behavior in the algebraic-decay, non-oscillatory, and oscillatory regions, respectively. This is a joint work with D. Bilman and R. Buckingham [arXiv:1911.04327v1]. Finally, we briefly introduce our recent work on the multiple-pole solitons in the focusing mKdV equation.


上一条:Seminar第2086期 Korteweg-de Vries方程初边值问题的差分方法

下一条:Seminar第2087期 Burgers’方程初边值问题差分格式的无穷模估计

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们