Seminar第2064期 Linearized Proximal Algorithms for Convex Composite Optimization with Applications

创建时间:  2020/12/15  谭福平   浏览次数:   返回

报告主题:Linearized Proximal Algorithms for Convex Composite Optimization with Applications

报 告 人:胡耀华 副教授 (深圳大学)

报告时间:2020年12月17日(周四) 9:30

会议地点:F309

邀 请 人:徐姿

主办部门:理学院数学系

报告摘要: In this talk, we consider the convex composite optimization (CCO) problem that provides a unified framework of a wide variety of important optimization problems, such as convex inclusions, penalty methods for nonlinear programming, and regularized minimization problems. We will introduce a linearized proximal algorithm (LPA) to solve the CCO. The LPA has the attractive computational advantages of simple implementation and fast convergence rate. Under the assumptions of local weak sharp minima of Holderian order and a quasi-regularity condition, we establish a local/semi-local/global superlinear convergence rate for the LPA-type algorithms. We further apply the LPA to solve a (possibly nonconvex) feasibility problem, as well as a sensor network localization problem. Our numerical results illustrate that the LPA meets the demand for an efficient and robust algorithm for the sensor network localization problem.


欢迎教师、学生参加!

上一条:Seminar第2065期 Smoothing fast iterative hard thresholding algorithm for L0 regularized nonsmooth convex regression problem

下一条:Seminar第2065期 Smoothing fast iterative hard thresholding algorithm for L0 regularized nonsmooth convex regression problem

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们