Seminar第2042期 Algorithmic Design for Big Data Related Optimization

创建时间:  2020/11/05  谭福平   浏览次数:   返回

报告主题:Algorithmic Design for Big Data Related Optimization

报 告 人:陈彩华 副教授 (南京大学)

报告时间:2020年11月6日(周五) 15:00

报告地点:G507

邀 请 人:徐姿

主办部门:理学院数学系

报告摘要:We live in the age of big data. The 5 characteristics of big data - volume, value, variety, velocity and veracity - have a significant impact on optimization. In this talk, we discuss some thinking of algorithmic design for big data related optimization problems. Specifically, we consider splitting methods for large scale structure optimization, to analyze the data with high volume and low value density. We also design efficient algorithms for distribution robust optimization, to cope with brittle veracity in data analysis. Finally, we propose LP-based approach for Markov Decision Process, which lays a deep ground in sequential decision making with dynamic data generated at a high velocity.


欢迎教师、学生参加!

上一条:Seminar第2041期 Massive Random Access for 5G and Beyond: An Optimization Perspective

下一条:Seminar第2041期 Massive Random Access for 5G and Beyond: An Optimization Perspective

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们