Seminar第2011期 陶哲轩关于在抛物面上双线性限制的最优估计

创建时间:  2020/09/27  谭福平   浏览次数:   返回

2020年建设高水平大学项目——研究生课程《近代分析》系列报告

报告主题: 陶哲轩关于在抛物面上双线性限制的最优估计

报 告 人:Shao Shuanglin 教授 (University of Kansas)

报告时间:2020年10月9日(周五) 19:30

参会方式:腾讯会议(ID: 953687062)

邀 请 人:赵发友

主办部门:理学院数学系

报告摘要: This talk is concerned with a topic in harmonic analysis. The Fourier restriction conjecture originated in Elias Stein's question in the late 60's. Stein asks whether it makes sense to restrict Fourier transforms of a function to a hypersurface in the n dimensional Euclidean spaces such as the sphere, the paraboloids, or the cone. Equivalently it concerns establishing strong type Lebesgue space estimates for Fourier transforms of certain surface carried measures. Such are called Fourier restriction estimates. They are connected to Strichartz's estimates in partial differential equations. In this talk we will discuss some ``recent" progress towards this problem. More precisely we will report Tao's paper in 2003 to illustrate a central idea used in recent proofs. The proof establishes a bilinear restriction estimate for paraboloids by using Wolff's induction on scales.


欢迎教师、学生参加!

上一条:Seminar第2012期 Toroidal Lie algebras and extended affine Lie algebras

下一条:Seminar第2010期 平面三角剖分图的Hamiltonian 圈数

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们