Seminar 第1982期 基于非光滑优化的半监督聚类算法

创建时间:  2020/07/24  谭福平   浏览次数:   返回

    数学系"60周年"系庆系列报告

报告主题:基于非光滑优化的半监督聚类算法

报告人:白富生 教授 (重庆师范大学)

报告时间:2020年7月29日(周三) 9:00-11:00

参会方式:Zoom 会议

https://cernet.zoom.com.cn/j/8649755986

会议ID:864 975 5986

主办部门:理学院数学系

报告摘要:A novel model for semi-supervised clustering (SSC) problems with pairwise constraints is proposed. The model is formulated as a nonconvex nonsmooth optimization problem. To solve the problem, an auxiliary SSC problem is formulated to generate starting points. An incremental SSC algorithm is then developed. The adoption of the incremental approach allows us to deal with the nonconvexity of the SSC problem by generating good initial points to approximate the solution. The discrete gradient method is applied to solve both the auxiliary SSC and the underlying problems. The performance of the incremental SSC algorithm is evaluated and compared with four benchmarking SSC algorithms on twelve real-world data sets from the UCI Machine Learning Repository. Numerical results show that the presented algorithm outperforms the other four algorithms in identifying compact and well-separated clusters with high constraints satisfaction rate.

欢迎教师、学生参加!

上一条:Seminar第1980期 一流课程建设的探索与实践

下一条:Seminar第1983期 核酸/抗体检测 – 组合图论方法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们