Seminar第1909期 凸多面体和非负符号矩阵的最小秩

创建时间:  2019/07/10  谭福平   浏览次数:   返回

报告主题:凸多面体和非负符号矩阵的最小秩
报告人:Zhongshan Li 教授 (Georgia State University)
报告时间:2019年7月26日(周五)16:00
报告地点:校本部G507
邀请人:谭福平

报告摘要:A sign pattern matrix (resp., nonnegative sign pattern matrix) is a matrix whose entries are from the set $\{+, -, 0\}$ (resp., $ \{ +, 0 \}$). The minimum rank (resp., rational minimum rank) of a sign pattern matrix $\cal A$ is the minimum of the ranks of the matrices (resp., rational matrices) whose entries have signs equal to the corresponding entries of $\cal A$. Using a correspondence between sign patterns with minimum rank $r\geq 2$ and point-hyperplane configurations in $\mathbb R^{r-1}$ and Steinitz's theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every $d$-polytope determines a nonnegative sign pattern with minimum rank $d+1$ that has a $(d+1)\times (d+1)$ triangular submatrix with all diagonal entries positive. It is also shown that there are at most $\min \{ 3m, 3n \}$ zero entries in any condensed nonnegative $m \times n$ sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.

.
欢迎教师、学生参加!


上一条:Seminar第1910期 极大算子的正则性若干进展(II)

下一条:Seminar第1908期 带空间阻尼项的半线性波方程的Strauss指标

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们