Seminar第1906期 曲线切割代数簇的奇点与合冲系

创建时间:  2019/07/09  谭福平   浏览次数:   返回

报告主题:曲线切割代数簇的奇点与合冲系
报告人:牛文博 Assistant Professor (University of Arkansas)
报告时间:2019年7月16日(周二)10:00
报告地点:校本部G508
邀请人:毛雪峰

报告摘要:Consider a projective nonsingular algebraic curve embedded in a projective space by a very ample line bundle. The (k + 1)-secant k-plan to the curve span the k-th secant variety of the curve. There has been a great deal of work in the last three decades to understand properties of such secant varieties, including their local properties,defining equations, and syzygies. In this talk, I will present a recent study on secant varieties of curves by showing the interaction between singularities and syzygies. The main idea in the talk is that if the degree of the embedding line bundle increases, then the properties of secant varieties become better. This is a joint work with L. Ein and J. Park.
.

欢迎教师、学生参加!


上一条:Seminar第1905期 极大算子的正则性若干进展(I)

下一条:Seminar第1908期 带空间阻尼项的半线性波方程的Strauss指标

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们