Seminar第1879期 自仿射分形的Lipschitz等价

创建时间:  2019/06/14  谭福平   浏览次数:   返回

报告主题:自仿射分形的Lipschitz等价
报告人: 罗军 教授 (重庆大学)
报告时间:2019年6月17日(周一)11:00
报告地点:校本部G507
邀请人:刘见礼

报告摘要:Recently Lipschitz equivalence of self-similar sets on ${\mathbb R}^d$ has been studied extensively in the literature. However for self-affine sets the problem is more awkward and there are very few results. In this talk, we will introduce a $w$-Lipschitz equivalence by repacing the Euclidean norm with a pseudo-norm $w$. Under the open set condition, we prove that any two totally disconnected integral self-affine sets with a common matrix are $w$-Lipschitz equivalent if and only if their digit sets have equal cardinality. The main methods used are the technique of pseudo-norm and Gromov hyperbolic graph theory on iterated function systems.

 

欢迎教师、学生参加!

上一条:Seminar第1876期 具低正则性初值的拟线性波动方程的整体解及其应用

下一条:Seminar第1880期 可压缩欧拉方程组的解析解

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们