Seminar第1875期 迫使所有特征根互异的符号模式矩阵

创建时间:  2019/06/13  谭福平   浏览次数:   返回

报告主题:迫使所有特征根互异的符号模式矩阵
报告人:李忠善 教授 (Georgia State University)
报告时间:2019年6月14日(周五)10:00
报告地点:校本部G508
邀请人:谭福平

报告摘要:A sign pattern (matrix) is a matrix whose entries are from the set {+, -, 0}. We say that a sign pattern A requires a certain matrix property P if every real matrix whose entries have signs agreeing with A has the property P. Some necessary or sufficient conditions for a square sign pattern to require all distinct eigenvalues are presented. Characterization of such sign pattern matrices is equivalent to determining when a certain real polynomial takes on only positive values whenever all of its variables are assigned arbitrarily chosen positive values. It is known that such sign patterns require a fixed number of real eigenvalues. The 3*3 irreducible sign patterns that require 3 distinct eigenvalues have been identified previously. We characterize the 4 *4 irreducible sign patterns that require four distinct real eigenvalues and those that require four distinct nonreal eigenvalues. The 4*4 irreducible sign patterns that require two distinct real eigenvalues and two distinct nonreal eigenvalues are investigated. Some related open problems are discussed.

 

欢迎教师、学生参加!

上一条:Seminar第1876期 具低正则性初值的拟线性波动方程的整体解及其应用

下一条:Seminar第1874期 Hopf代数的一些分类结果

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们