Seminar第1863期 Fusion rules for Z_2-orbifolds of affine and parafermion vertex operator algebras

创建时间:  2019/06/05  谭福平   浏览次数:   返回

 

报告主题:Fusion rules for $\mathbb{Z}_{2}$-orbifolds of affine and parafermion vertex operator algebras
报告人:姜翠波   教授 (上海交通大学)
报告时间:2019年6月12日(周三)14:30
报告地点:校本部G508
邀请人:孙建才

报告摘要:This talk is about the orbifold theory of affine and parafermion vertex operator algebras. It is known that the parafermion vertex operator algebra $K(sl_2,k)$ associated to the integrable highest weight modules for the affine Kac-Moody algebra $A_1^{(1)}$ is the building block of the general parafermion vertex operator $K(\mathfrak{g},k)$ for any finite dimensional simple Lie algebra $\mathfrak{g}$ and any positive integer $k$.
We first classify the irreducible modules of $\Z_{2}$-orbifold of the simple affine vertex operator algebra of type $A_1^{(1)}$ and determine their fusion rules. Then we study the representations of the $\Z_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$, we give the quantum dimensions, and more technically, fusion rules for the $\mathbb{Z}_{2}$-orbifold of the parafermion vertex operator algebra $K(sl_2,k)$ are  completely determined. This talk is based on joint work with Wang Qing.


欢迎教师、学生参加!

上一条:Seminar第1864期 Constructing splitting methods for convex optimization -- From the perspective of VI and PPA

下一条:Seminar第1866期 图的零度

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们