Seminar第1797期 时间分数阶Allen-Cahn和Cahn-Hilliard相场模型及其数值研究

创建时间:  2019/04/15  谭福平   浏览次数:   返回

报告主题:时间分数阶Allen-Cahn和Cahn-Hilliard相场模型及其数值研究
报告人:刘欢 博士生 (山东大学数学学院)
报告时间:2019年5月13日(周一)17:00
报告地点:校本部G507
邀请人:李常品

报告摘要:In this talk, we introduce the time-fractional Allen–Cahn and Cahn–Hilliard phase-field models to account for the anomalously subdiffusive transport behavior in heterogeneous porous materials or memory effect of certain materials. We develop an efficient finite difference scheme and a Fourier spectral scheme to effectively treat the significantly increased memory requirement and computational complexity, which arise due to the nonlocal behavior of the time-fractional models.
For time fractional Cahn–Hilliard model, we observe from the numerical results that the bigger the fractional order is, the faster the energy decays. However, for time fractional Allen–Cahn model, we derived an opposite conclusion. Moreover, we also study the coarsening dynamics for time fractional Cahn–Hilliard model, numerical results reveal that the scaling law for the energy decays as O(), which is consistent with the well-known result O() for integer-order Cahn–Hilliard model.

 

欢迎教师、学生参加!

上一条:Seminar第1794期 On mathematical models by (variable-order) time-fractional diffusion equations

下一条:Seminar第1800期 A Vertex-centered Positivity-preserving Diamond Scheme for Duffusion equation on Arbitrary Polygonal Meshes

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们