Seminar第1795期 Wellposedness and regularity of variable order time fractional diffusion equations

创建时间:  2019/04/15  谭福平   浏览次数:   返回

报告主题:Wellposedness and regularity of variable order time fractional diffusion equations
报告人:Xiangcheng Zheng 博士生 (Department of Mathematics, University of South Carolina)
报告时间:2019年5月13日(周一)15:00
报告地点:校本部G507
邀请人:李常品

报告摘要:We prove the wellposedness of a nonlinear variable-order fractional ordinary differential equation and the regularity of its solutions, which is determined by the values of the variable order and its high-order derivatives at time t=0. More precisely, we prove that its solutions have full regularity like its integer-order analogue if the variable order has an integer limit at t=0 or exhibits singular behaviors at t=0 like in the case of the constant-order fractional differential equations if the variable order has a non-integer value at time t=0.

We then extend the developed techniques to prove the wellposedness of a variable-order linear time-fractional diffusion equation in multiple space dimensions and the regularity of its solutions, which depends on the behavior of the variable order at t=0 in the similar manner to that of the fractional ordinary differential equations.

 

欢迎教师、学生参加!

上一条:Seminar第1794期 On mathematical models by (variable-order) time-fractional diffusion equations

下一条:Seminar第1800期 A Vertex-centered Positivity-preserving Diamond Scheme for Duffusion equation on Arbitrary Polygonal Meshes

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们