Seminar第1787期 The Fractional Green's Function by Babenko's Approach

创建时间:  2019/04/08  谭福平   浏览次数:   返回

报告主题: The Fractional Green's Function by Babenko's Approach
报告人:Chenkuan Li 教授 ( 布兰登大学)
报告时间:2019年5月20日(周一)15:00
报告地点:校本部G507
邀请人:李常品

报告摘要:The goal of this talk is to derive the fractional Green's function for the first time in the distributional space ${\mathcal D}'(R^+)$ for the following fractional-order differential equation with constant coefficients
a u^{(\beta)}(t) + b u^{(\alpha)}(t) + c u(t) = g(t)
by Babenko's Approach, without using any integral transforms, such as Laplace transform. The results obtained are more generalized than classical ones as they deal with distributions in Schwartz's sense. Furthermore, we provide several interesting applications of solving the fractional differential equations for various values of $\beta$ and $\alpha$ with $\beta > \alpha > 0$, by showing the convergence of double series based on Gamma functions.

 

欢迎教师、学生参加!

上一条:Seminar第1788期 奇异Kawarada偏微分方程和六种移动网格思想的数值试验

下一条:Seminar第1791期 等周问题

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们