Seminar第1780期 回火分数阶反应扩散方程的基于一般数值流通量的间断有限元方法

创建时间:  2019/03/28  谭福平   浏览次数:   返回

报告主题: 回火分数阶反应扩散方程的基于一般数值流通量的间断有限元方法
报告人:韦雷雷 副教授 (河南工业大学)
报告时间:2019年4月2日(周二)15:00
报告地点:校本部G507
邀请人:李常品

报告摘要:The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully discrete local discontinuous Galerkin (LDG) method based on the generalized alternating numerical fluxes for the tempered fractional diffusion equation. From a practical point of view, the generalized alternating numerical flux which is different from the purely alternating numerical flux has a broader range of applications. We first design an efficient finite difference scheme to approximate the tempered fractional derivatives and then a fully discrete LDG method for the tempered fractional diffusion equation. We prove that the scheme is unconditionally stable and convergent with the order $O(h^{k+1}+\tau^{2-\alpha})$, where $h, \tau$ and $k$ are the step size in space, time and the degree of piecewise polynomials, respectively. Finally numerical experimets are performed to show the effectiveness and testify the accuracy of the method.

 

 欢迎教师、学生参加!

上一条:Seminar第1779期 分数阶微分方程的间断Galerkin方法

下一条:Seminar第1779期 分数阶微分方程的间断Galerkin方法

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们