Seminar第1733期 A revised gradient descent algorithm for linearly constrained lp minimization with p ∈ (0,1)

创建时间:  2018/12/06  谭福平   浏览次数:   返回

报告主题:A revised gradient descent algorithm for linearly constrained lp minimization with p ∈ (0,1)
报告人:Shan Jiang 博士 (美国北卡州立大学)
报告时间:2018年12月19日(周三)15:00
报告地点:校本部G508
邀请人:白延琴

报告摘要:In this paper, we study the linearly constrained lp minimization problem with p ∈ (0,1). Unlike former works in the literature that propose ε-KKT points through relaxed optimality conditions, here we define a scaled KKT condition that is not relaxed. A revised gradient descent algorithm is proposed to search for points satisfying the proposed condition. The convergency proofs with complexity analysis of the proposed algorithm are provided. Computational experiments support that the proposed algorithm is capable of achieving better sparse recovery with far less computational time compared to state-of-the-art interior-point based algorithm.

  

欢迎教师、学生参加 !

上一条:Seminar第1731期 分数次积分在具有混合范数的勒贝格空间上的性质

下一条:Seminar第1732期 A Sub-one Quasi-norm-based Similarity Measure and Related Optimization Models

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们