Seminar第1720期 Orbital geometry - from matrices to Lie groups

创建时间:  2018/11/19  谭福平   浏览次数:   返回

报告主题:Orbital geometry - from matrices to Lie groups
报告人:Tin-Yau Tam 教授 (University of Nevada, Reno, USA)
报告时间:2018年11月19日(周一)9:10
报告地点:校本部G507
邀请人:王卿文教授

报告摘要:Given an $n\times n$ matrix $A$, the celebrated Toeplitz-Hausdorff theorem asserts that the classical numerical range $\{x^*Ax: x\in {\mathbb C}^n: x^*x=1\}$ is a convex set, where ${\mathbb C}^n$ is the vector space of complex $n$-tuples and $x^*$ is the complex conjugate transpose of $x\in {\mathbb C}^n$. Schur-Horn Theorem asserts that the set of the diagonals of Hermitian matrices of a prescribed eigenvalues is the convex hull of the orbit of the eigenvalues under the action of the symmetric groups. These results are about unitary orbit of a matrix. Among interesting generalizations, we will focus our discussion on those in the context of Lie structure, more precisely, compact connected Lie groups and semisimple Lie algebras. Some results on convexity and star-shapedness will be presented.

欢迎教师、学生参加 !

上一条:Seminar第1719期 Scalars Associated With Matrices

下一条:Seminar第1721期 An adaptive framework for costly black-box global optimization based on radial basis function interpolation

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们