Seminar第1715期 以两参数薄膜函数类作为二维散乱数据的插值

创建时间:  2018/11/13  谭福平   浏览次数:   返回

报告主题: 以两参数薄膜函数类作为二维散乱数据的插值
报告人:刘进贤 教授 (河海大学)
报告时间:2018年11月16日(周五)10:00
报告地点:校本部G507
邀请人:刘东杰

报告摘要:For solving the 2D scattered data interpolation problem we develop a family of two-parameter membrane functions as the bases to construct the interpolant, which can avoid the highly ill-conditioned property by using the high-order polynomials. We begin with the boundary functions on a rectangle in the plane to construct a sequence of membrane functions with different orders of the shape functions. The polynomial, sinusoidal, exponential shape functions and maybe their weight combination are used to generate the two-parameter membrane functions. The novel method can reconstruct highly accurate function in the whole domain with less amount of interpolated data. The present method is novel and promise in the 2D scattered data interpolations.


欢迎教师、学生参加 !

上一条:Seminar 第1717期 向量优化问题的标量化方法

下一条:Seminar第1716期 机器学习和数据同化在空气质量预测中的应用

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们