Seminar第1708期 Approximation properties of Bernoulli and related numbers

创建时间:  2018/10/31  谭福平   浏览次数:   返回

报告主题:Approximation properties of Bernoulli and related numbers
报告人: Takao Komatsu 教授 (武汉大学)
报告时间:2018年11月9日(周五)10:00
报告地点:校本部F412
邀请人:Mikio Nakahara

报告摘要:Several generalized Bernoulli numbers have been introduced and studied in various aspects. In this talk, we focus on hypergeometric Bernoulli numbers, which are generalized by using hypergeometric functions. There are several advantages for hypergeometric numbers, in particular, in the expressions of determinants. Moreover, we can get new identities and relations by using a continued fraction expansion of the generating functions of hypergeometric Bernoulli numbers. Some new identities and relations for Bernoulli numbers can be reduced. This kind of approximation methods can be applicable to other related numbers (e.g., Euler numbers, Cauchy numbers, harmonic numbers and their generalized numbers) to get new identities or new expansions. We discuss the results and applications.


欢迎教师、学生参加 !

上一条:Seminar第1707期 微积分降到最低点——两个算术等式

下一条:Seminar第1707期 微积分降到最低点——两个算术等式

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们