Seminar第2993讲 浅层神经网络的优化与泛化分析

创建时间:  2025/12/12  谭福平   浏览次数:   返回

报告题目 (Title):Optimization and generalization analysis for shallow neural networks(浅层神经网络的优化与泛化分析)

报告人 (Speaker):顾亦奇 教授(电子科技大学)

报告时间 (Time):2025年12月12日 (周五) 13:30

报告地点 (Place):校本部 F309教室

邀请人(Inviter):涂一辉


报告摘要:We study the behavior of stochastic gradient descent (SGD) in solving least-squares regression with shallow neural networks, including fully-connected neural networks, convolutional neural networks and physics-informed neural networks. Past work on this topic has been based on the over-parameterization regime, whose convergence may require the network width to increase vastly with the number of training samples. We perform new optimization and generalization analyses, showing that the training loss and expected risk can be reduced below any target accuracy without the overparameterization hypothesis.



下一条:Seminar第2990讲 分次Nakajima张量簇

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们