Seminar第1682期 神经网络训练

创建时间:  2018/07/12  谭福平   浏览次数:   返回

报告主题:神经网络训练
报告人:Lu Zhiqin 教授 (University of California,Irvine)
报告时间:2018年7月18日(周三)10:00
报告地点:校本部G507
邀请人:胡召平

报告摘要:In this talk, we shall give a mathematical setting of the Random Backpropogation (RBP) method in unsupervised machine learning. When there is no hidden layer in the neural network, the method degenerates to the usual least square method. When there are multiple hidden layers, we can formulate the learning procedure as a system of nonlinear ODEs. We proved the short time, long time existences as well as the convergence of the system of nonlinear ODEs when there is only one hidden layer. This is joint work with Pierre Baldi in Neural Networks 33 (2012) 136-147, and with Pierre Baldi, Peter Sadowski in Neural Networks 95 (2017) 110-133 and in Artificial Intelligence 260 (2018), 1-35.

欢迎教师、学生参加 !

上一条:Seminar第1683期 Nullity 2 extended affine Lie algebras

下一条:Seminar 第1681期 自适应的基本解方法(II)

  版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们